Американские нейрофизиологи сделали ещё один шаг на пути к осознанию фундаментальных механизмов интеллекта – они описали трансформацию полученного опыта в долгосрочную память на молекулярном уровне. Вполне возможно, что существенную часть наших когнитивных способностей обеспечивает всего лишь один небольших размеров "биомоторчик".
Каким образом мозг обрабатывает воспоминания и складирует их в своих нейродинамических структурах? У науки однозначного ответа на этот вопрос пока нет. Даже типов обращения к "жёсткому диску" существует как минимум несколько.
В целом считается, что воспоминания сохраняются в результате долговременной потенциации (LTP), то есть протяжённого во времени обмена сигналами между двумя нейронами. Этот механизм взаимодействия, известный как синаптическая связь, вообще очень важен. Именно его усложнение, возможно, привело к развитию человеческого интеллекта.
Обменивающиеся информацией нейроны вырабатывают особые вещества-посредники, нейротрансмиттеры, которые стимулируют рецепторы близлежащих клеток – и так далее, по цепочке. Если взаимодействие длительное, активизируется максимальное число рецепторов и "принимающая сторона" лучше усваивает входящий трафик.
На словах звучит довольно просто, но на молекулярном уровне в этом процессе разобраться гораздо сложнее.
Ранее уже было выдвинуто предположение, что за активизацию чувствительности может отвечать белок миозин, более известный в качестве регулятора сокращения мышц.
С этим фибриллярным протеином и решили разобраться нейрофизиологи из США во главе Майклом Элерсом (Michael Ehlers) из медицинского центра при университете Дюка (Duke University). Чтобы оценить его истинную роль, учёные ввели в мозг подопытных крыс некоторое количество ионов кальция (Ca++).
Дело в том, что кальций стимулирует производство миозина Vb, который, в свою очередь, прицепляется к неактивным рецепторам и как бы вытягивает их в рабочую область синапса. В результате обеспечивается долгосрочная потенциация, а вместе с ней и лучшая способность к запоминанию и обучению. В теории.
Чтобы проверить версию с миозином Vb на практике, американцы химически заблокировали его выработку в нейронах. В результате оказалось, что без "умного" белка клетки действительно неспособны к LTP.
"Этот настоящий моторчик долгосрочной памяти. Возможно, именно он обеспечивает основную часть наших способностей к запоминанию", — полагает доктор Элерс.
"Полученные результаты позволят нащупать общую схему устройства интеллекта", — уверена нейробиолог Мэри Вутен (Marie Wooten) из университета Оберна (Auburn University). По её мнению, авторам работы впервые удалось пошагово описать молекулярный механизм долгосрочной памяти.
Подробнее с этим исследованием вы можете ознакомиться в журнале Cell.
|